Yet Another Blog in Statistical Computing

I can calculate the motion of heavenly bodies but not the madness of people. -Isaac Newton

Posts Tagged ‘Sparkling Water

Sparkling Water and Moving Data Around

Sparkling Water is an application to integrate H2O with Spark. Below is an example showing how to move the data around among Pandas DataFrame, H2OFrame, and Spark Dataframe.

1. Define Context

In [1]: from pandas import read_csv, DataFrame

In [2]: from pyspark import sql

In [3]: from pysparkling import H2OContext

In [4]: from h2o import import_file, H2OFrame

In [5]: ss = sql.SparkSession.builder.getOrCreate()

In [6]: hc = H2OContext.getOrCreate(ss)

2. Convert Pandas Dataframe to H2OFrame and Spark DataFrame

In [7]: p_df = read_csv("Documents/credit_count.txt")

In [8]: type(p_df)
Out[8]: pandas.core.frame.DataFrame

In [9]: p2s_df = ss.createDataFrame(p_df)

In [10]: type(p2s_df)
Out[10]: pyspark.sql.dataframe.DataFrame

In [11]: p2h_df = H2OFrame(p_df)

In [12]: type(p2h_df)
Out[12]: h2o.frame.H2OFrame

3. Convert Spark Dataframe to H2OFrame and Pandas DataFrame

In [13]: s_df = ss.read.csv("Documents/credit_count.txt", header = True, inferSchema = True)

In [14]: type(s_df)
Out[14]: pyspark.sql.dataframe.DataFrame

In [15]: s2p_df = s_df.toPandas()

In [16]: type(s2p_df)
Out[16]: pandas.core.frame.DataFrame

In [17]: s2h_df = hc.as_h2o_frame(s_df)

In [18]: type(s2h_df)
Out[18]: h2o.frame.H2OFrame

4. Convert H2OFrame to Pandas Dataframe and Spark DataFrame

In [19]: h_df = import_file("Documents/credit_count.txt", header = 1, sep = ",")

In [20]: type(h_df)
Out[20]: h2o.frame.H2OFrame

In [21]: h2p_df = h_df.as_data_frame()

In [22]: type(h2p_df)
Out[22]: pandas.core.frame.DataFrame

In [23]: h2s_df = hc.as_spark_frame(h_df)

In [24]: type(h2s_df)
Out[24]: pyspark.sql.dataframe.DataFrame
Advertisements

Written by statcompute

July 3, 2017 at 12:36 am