I can calculate the motion of heavenly bodies but not the madness of people. -Isaac Newton

## Calculate Leave-One-Out Prediction for GLM

In the model development, the “leave-one-out” prediction is a way of cross-validation, calculated as below:
1. First of all, after a model is developed, each observation used in the model development is removed in turn and then the model is refitted with the remaining observations
2. The out-of-sample prediction for the refitted model is calculated with the removed observation one by one to assemble the LOO, e.g. leave-one-out predicted values for the whole model development sample.
The loo_predict() function below is a general routine to calculate the LOO prediction for any GLM object, which can be further employed to investigate the model stability and predictability.

```> pkgs <- c('doParallel', 'foreach')
> lapply(pkgs, require, character.only = T)
[[1]]
[1] TRUE

[[2]]
[1] TRUE

> registerDoParallel(cores = 8)
>
> data(AutoCollision, package = "insuranceData")
> # A GAMMA GLM #
> model1 <- glm(Severity ~ Age + Vehicle_Use, data = AutoCollision, family = Gamma(link = "log"))
> # A POISSON GLM #
> model2 <- glm(Claim_Count ~ Age + Vehicle_Use, data = AutoCollision, family = poisson(link = "log"))
>
> loo_predict <- function(obj) {
+   yhat <- foreach(i = 1:nrow(obj\$data), .combine = rbind) %dopar% {
+     predict(update(obj, data = obj\$data[-i, ]), obj\$data[i,], type = "response")
+   }
+   return(data.frame(result = yhat[, 1], row.names = NULL))
+ }
> # TEST CASE 1
> test1 <- loo_predict(model1)
> test1\$result
[1] 303.7393 328.7292 422.6610 375.5023 240.9785 227.6365 288.4404 446.5589
[9] 213.9368 244.7808 278.7786 443.2256 213.9262 243.2495 266.9166 409.2565
[17] 175.0334 172.0683 197.2911 326.5685 187.2529 215.9931 249.9765 349.3873
[25] 190.1174 218.6321 243.7073 359.9631 192.3655 215.5986 233.1570 348.2781
> # TEST CASE 2
> test2 <- loo_predict(model2)
> test2\$result
[1]  11.15897  37.67273  28.76127  11.54825  50.26364 152.35489 122.23782
[8]  44.57048 129.58158 465.84173 260.48114 107.23832 167.40672 510.41127
[15] 316.50765 121.75804 172.56928 546.25390 341.03826 134.04303 359.30141
[22] 977.29107 641.69934 251.32547 248.79229 684.86851 574.13994 238.42209
[29] 148.77733 504.12221 422.75047 167.61203

```