After switching the role from the credit risk to the operational risk in 2015, I spent countless weekend hours in the Starbucks researching on how to model operational losses in the regression setting in light of the heightened scrutiny. While I feel very comfortable with various frequency models, how to model severity and loss remain challenging both conceptually and empirically. The same challenge also holds true for modeling other financial measures in dollar amounts, such as balance, profit, or cost.

Most practitioners still prefer modeling severity and loss under the Gaussian distributional assumption explicitly or implicitly. In practice, there are 3 commonly used approaches, as elaborated below.

– First of all, the simple OLS regression to model severity and loss directly without any transformation remains the number one choice due to the simplicity. Given the inconsistency between the empirical data range and the conceptual domain for a Gaussian distribution, it is evidential that this approach is problematic.

– Secondly, the OLS regression to model LOG transformed severity and loss under the Lognormal distributional assumption is also a common approach. In this method, Log(Y) instead of Y is estimated. However, given E(Log(Y)|X) != Log(E(Y|X)), the estimation bias is introduced and therefore should be corrected by MSE / 2. In addition, the positive domain of a Lognormal might not work well in cases of losses with a lower bound that can be either zero or a known threshold value.

– At last, the Tobit regression under the censored Normal distribution seems a viable solution that supports the non-negative or any above-threshold values shown in severity or loss measures. Nonetheless, the censorship itself is questionable given that the unobservability of negative or below-threshold values is not due to the censorship but attributable to the data nature governed by the data collection process. Therefore, the argument for the data censorship is not well supported.

Considering the aforementioned challenge, I investigated and experimented various approaches given different data characteristics observed empirically.

– In cases of severity or loss observed in the range of (0, inf), GLM under Gamma or Inverse Gaussian distributional assumption can be considered (https://statcompute.wordpress.com/2015/08/16/some-considerations-of-modeling-severity-in-operational-losses). In addition, the mean-variance relationship can be employed to assess the appropriateness of the correct distribution by either the modified Park test (https://statcompute.wordpress.com/2016/11/20/modified-park-test-in-sas) or the value of power parameter in the Tweedie distribution (https://statcompute.wordpress.com/2017/06/24/using-tweedie-parameter-to-identify-distributions).

– In cases of severity or loss observed in the range of [alpha, inf) with alpha being positive, then a regression under the type-I Pareto distribution (https://statcompute.wordpress.com/2016/12/11/estimate-regression-with-type-i-pareto-response) can be considered. However, there is a caveat that the conditional mean only exists when the shape parameter is large than 1.

– In cases of severity or loss observed in the range of [0, inf) with a small number of zeros, then a regression under the Lomax distribution (https://statcompute.wordpress.com/2016/11/13/parameter-estimation-of-pareto-type-ii-distribution-with-nlmixed-in-sas) or the Tweedie distribution (https://statcompute.wordpress.com/2017/06/29/model-operational-loss-directly-with-tweedie-glm) can be considered. For the Lomax model, it is worth pointing out that the shape parameter alpha has to be large than 2 in order to to have both mean and variance defined.

– In cases of severity or loss observed in the range of [0, inf) with many zeros, then a ZAGA or ZAIG model (https://statcompute.wordpress.com/2017/09/17/model-non-negative-numeric-outcomes-with-zeros) can be considered by assuming the measure governed by a mixed distribution between the point-mass at zeros and the standard Gamma or Inverse Gaussian. As a result, a ZA model consists of 2 sub-models, a nu model separating zeros and positive values and a mu model estimating the conditional mean of positive values.