## More about Flexible Frequency Models

Modeling the frequency is one of the most important aspects in operational risk models. In the previous post (https://statcompute.wordpress.com/2016/05/13/more-flexible-approaches-to-model-frequency), the importance of flexible modeling approaches for both under-dispersion and over-dispersion has been discussed.

In addition to the quasi-poisson regression, three flexible frequency modeling techniques, including generalized poisson, double poisson, and Conway-Maxwell poisson, with their implementations in R should also be demonstrated below. While the example is specifically related to the over-dispersed data simulated with the negative binomial distributional assumption, these approaches can be generalized to the under-dispersed data as well given their flexibility. However, as demonstrated below, the calculation of parameters for these modeling approaches is not straight-forward.

**Over-Dispersed Data Simulation**

> set.seed(1) > ### SIMULATE NEG. BINOMIAL WITH MEAN(X) = MU AND VAR(X) = MU + MU ^ 2 / THETA > df <- data.frame(y = MASS::rnegbin(1000, mu = 10, theta = 5)) > ### DATA MEAN > mean(df$y) [1] 9.77 > ### DATA VARIANCE > var(df$y) [1] 30.93003003

**Generalized Poisson Regression**

> library(VGAM) > gpois <- vglm(y ~ 1, data = df, family = genpoisson) > gpois.theta <- exp(coef(gpois)[2]) > gpois.lambda <- (exp(coef(gpois)[1]) - 1) / (exp(coef(gpois)[1]) + 1) > ### ESTIMATE MEAN = THETA / (1 - LAMBDA) > gpois.theta / (1 - gpois.lambda) (Intercept):2 9.77 > ### ESTIMATE VARIANCE = THETA / ((1 - LAMBDA) ^ 3) > gpois.theta / ((1 - gpois.lambda) ^ 3) (Intercept):2 31.45359991

**Double Poisson Regression**

> ### DOUBLE POISSON > library(gamlss) > dpois <- gamlss(y ~ 1, data = df, family = DPO, control = gamlss.control(n.cyc = 100)) > ### ESTIMATE MEAN > dpois.mu <- exp(dpois$mu.coefficients) > dpois.mu (Intercept) 9.848457877 > ### ESTIMATE VARIANCE = MU * SIGMA > dpois.sigma <- exp(dpois$sigma.coefficients) > dpois.mu * dpois.sigma (Intercept) 28.29229702

**Conway-Maxwell Poisson Regression**

> ### CONWAY-MAXWELL POISSON > library(CompGLM) > cpois <- glm.comp(y ~ 1, data = df) > cpois.lambda <- exp(cpois$beta) > cpois.nu <- exp(cpois$zeta) > ### ESTIMATE MEAN = LAMBDA ^ (1 / NU) - (NU - 1) / (2 * NU) > cpois.lambda ^ (1 / cpois.nu) - (cpois.nu - 1) / (2 * cpois.nu) (Intercept) 9.66575376 > ### ESTIMATE VARIANCE = LAMBDA ** (1 / NU) / NU > cpois.lambda ^ (1 / cpois.nu) / cpois.nu (Intercept) 29.69861239